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ABSTRACT

All but the most massive main-sequence stars are expected to have a rarefied and hot (million-Kelvin) corona like the Sun. How
such a hot corona is formed and supported has not been completely understood yet, even in the case of the Sun. Recently, Barbieri
et al. (2024a,b) introduced a new model of a confined plasma atmosphere and applied it to the solar case, showing that rapid, intense,
intermittent and short-lived heating events in the high chromosphere can drive the coronal plasma into a stationary state with temper-
ature and density profiles similar to those observed in the solar atmosphere. In this paper we apply the model to main-sequence stars,
showing that it predicts the presence of a solar-like hot and rarefied corona for all such stars, regardless of their mass. However, the
model is not applicable as such to the most massive main-sequence stars, because the latter lack the convective layer generating the
magnetic field loop structures supporting a stationary corona, whose existence is assumed by the model. We also discuss the role of
stellar mass in determining the shape of the temperature and density profiles.
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1. Introduction

The density of the Sun steadily decreases from its center to
the outermost layer of its atmosphere, the corona, which is ex-
tremely rarefied, being more than one million times less dense
than the surface (photosphere). On the contrary, the temperature
of the Sun decreases only up to the first layers of the atmosphere
above the photosphere, and then starts to increase reaching mil-
lions of Kelvins in the corona, which is therefore more than two
hundred times hotter than the photosphere (Golub & Pasachoff
2009). This temperature increase while density decreases, often
referred to as “temperature inversion”, happens quite abruptly.
Most of both the temperature jump and the density drop occur in
the so-called “transition region”, a thin (only hundreds of kilo-
meters wide) layer separating the lowest layer of the Sun’s atmo-
sphere, the chromosphere, from the corona. Most of the plasma
in the corona is organized in loops, following the magnetic field
lines which exit the photosphere and then re-enter it, and emits
radiation in the X band (Aschwanden 2005). An X-ray emission
has been detected in many other main-sequence stars, regard-
less of the spectral type (Pallavicini 1989; Gudel 2004; Ness,
J.-U. et al. 2004). Since all the main-sequence stars with mass
M < 1.5 M⊙ have a convective region below the photosphere
where a Sun-like magnetic field originates (see e.g. Maoz 2007),
the X-ray emission is thought to be of coronal origin and all
the late-type (from late spectral type A onwards) main-sequence
stars are thought to have a corona analogous to the solar one,
organized in loop structures and with a temperature around 106

K. A strong hint at the presence of a corona made up of Sun-like
magnetic structures is that the relation between the X-ray lumi-
nosity and the magnetic field strength follows the same power
law in both the Sun’s active regions (Fisher et al. 1998) and the

atmospheres of less massive main-sequence stars (Pevtsov et al.
2003). The case of the most massive main-sequence stars (i.e.,
O, B and up to early-A spectral type) is different because these
stars lack a convective region below the photosphere and there-
fore should not have a solar-like magnetic field able to support
a stationary corona: the X-ray emission from these stars is not
attributed to a coronal activity but rather to strong winds and
shocks (Pallavicini 1989; Gudel 2004).

Despite decades of investigation, the mechanism producing
the million-Kelvin corona of the Sun (and of the other stars as
well) is largely not yet understood. This open problem is referred
to as the coronal heating problem (Klimchuk 2006; Parnell &
De Moortel 2012). Most efforts have been conducted along the
lines of finding suitable mechanisms able to transport energy
from the lower layers to coronal heights, or to release energy
stored in the magnetic field, and to efficiently dissipate such an
energy in the corona (Parker 1972; Dmitruk & Gomez 1997;
Gudiksen & Nordlund 2005; Rappazzo et al. 2008; Rappazzo
& Parker 2013; Wilmot-Smith 2015; Heyvaerts & Priest 1983;
Ionson 1978; Howson et al. 2020; Pontieu et al. 2011). Scudder
(1992a,b) proposed a different approach, observing that colli-
sions in the very dilute coronal plasma are rare and therefore the
corona might be out of thermal equilibrium. Thus, if the velocity
distribution functions of the particles at the base of the corona,
i.e., in the upper chromosphere, are non-Maxwellian, and in par-
ticular have suprathermal tails (i.e., the probability of finding fast
particles is larger than in a Maxwellian), then faster particles are
able to climb higher in the gravitational potential well. As a re-
sult, the temperature increases with height while the density de-
creases. Such a mechanism was dubbed “velocity filtration” or
“gravitational filtering”. At variance with the above-mentioned
approaches, Scudder’s model does not involve any local deposi-
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tion of heat in the corona and is able to reproduce coronal tem-
peratures and densities; however, it predicts a smooth change of
the latter quantities, without a transition region, and its basic as-
sumption of non-Maxwellian distribution functions for particles
in the collisional chromosphere is difficult to justify.

In the highly collisional environment of the Sun’s chromo-
sphere, any deviation from thermal distributions is expected to
be extremely short-lived. Therefore, particles’ distribution func-
tions in the chromosphere are expected to be thermal. This
notwithstanding, the chromosphere is a very dynamic environ-
ment and its temperature is expected to fluctuate in space and
time (Molnar et al. 2019). Starting from this observation, Bar-
bieri et al. (2024a,b) recently reconsidered Scudder’s pioneering
intuition, replacing the (hardly justifiable) assumption of non-
thermal distributions in the high chromosphere with the hypoth-
esis of a fluctuating temperature in an otherwise fully collisional
and thermal chromosphere. Barbieri et al. (2024a,b) showed
that rapid, intense, intermittent and short-lived temperature in-
crements in the high chromosphere are able to drive the above
plasma atmosphere towards a stationary configuration with an
inverted temperature-density profile, with a transition region and
a hot corona very similar to the observed one (Yang, S. H. et al.
2009), but for the fact that the transition region predicted by the
model is thicker than the observed one. According to this model,
the mechanism producing temperature inversion in the solar at-
mosphere is velocity filtration as in Scudder’s model, but there
is no need to postulate distribution functions with suprathermal
tails in the chromosphere: the latter are self-consistently pro-
duced by the gravitational filtering itself, and originate in the
superposition of different thermal distributions in the chromo-
sphere. Temperature fluctuations are modelled by a stochastic
process, and essentially any probability distribution such that
more intense fluctuations are less frequent than less intense ones
works. Remarkably, no fine-tuning of the parameters is required
to produce temperature inversion, the only requirement being
that the temperature fluctuations are fast enough to prevent the
system from relaxing towards a thermal configuration (for the
Sun, this means that fluctuations must occur on a subsecond time
scale, which is unresolved in current solar observations). The av-
erage intensity of the fluctuations, however, must be sufficiently
large as to produce coronal temperatures. Indeed, short-lived, in-
tense, and small-scale brightenings are routinely observed on the
Sun (Dere et al. 1989; Teriaca et al. 2004; Peter et al. 2014; Ti-
wari et al. 2019; Berghmans et al. 2021). The so-called campfires
recently observed in extreme UV images have temperatures of
the order of 106 K, while explosive events appearing in Hα line
widths have smaller temperatures, about 2 × 105 K, but are ten
times more frequent (Teriaca et al. 2004). This trend is consistent
with the distribution of rapid temperature increments assumed in
the model. Moreover, based on recent extreme UV solar observa-
tions, Raouafi et al. (2023) have shown that small-scale magnetic
reconnection events at the base of the solar corona can produce
a flow of matter that propagates up into the corona with the cor-
rect energy budget to heat the plasma environments up to million
degrees.

Since a Sun-like hot corona is expected to be present in low-
mass main-sequence stars (i.e., stars with M < 1.5 M⊙), and the
velocity filtration mechanism is very general and does not re-
quire any Sun-specific feature, in the present paper we apply the
model proposed by Barbieri et al. (2024a,b) to main-sequence
stars. More specifically, we want to answer the following ques-
tions: Does the model predict an inverted temperature-density
profile with a transition region and a hot corona for all main-
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The temperature of the solar atmosphere increases from thousands
to millions of degrees moving from the lower layer (chromosphere)
to the outermost one (corona), while the density drops accordingly:
this is referred to as temperature inversion. The two layers are
connected by the transition region, a very thin interface that sees
temperature and density variations of orders of magnitude. The
mechanism behind the coronal heating is still largely unknown.

Is the corona in thermal equilibrium?

Assuming local thermodynamic equilibrium, a hot corona
can form only upon the local deposition of heat in the upper layer.
However, there are some theoretical/observational indications that
the plasma in the corona and in the transition region may not be
in local thermodynamic equilibrium. This allows to obtain
temperature inversion without local deposition of heat in the
upper layer, as first recognized by Scudder (1992a,b), who showed
that if the velocity distribution functions of electrons and ions in the
chromosphere are non-Maxwellian with suprathermal tails, then
temperature must increase with height: faster particles are
able to climb higher in the Sun’s gravity well and temperature in-
creases thanks to “gravitational velocity filtration.” However,
non-thermal distributions in the highly collisional chromo-
spheric plasma are difficult to justify, and Scudder’s model
produces a smooth increase of the temperature with height without a
transition region.

The coronal heating problem

We model a coronal loop as a collisionless plasma in thermal
contact with a thermostat mimicking the collisional chromo-
spheric plasma.

coronal loop (collisionless)

chromosphere (fully collisional)

thermal contact

If the thermostat (chromosphere) temperature is constant, the
coronal loop is isothermal, at the same temperature T0 of the ther-
mostat. But the chromosphere is a very dynamic environment,
therefore we assume that its temperature fluctuates due to random
heating events of amplitude ∆T and duration τ , separated by
waiting times tw during which the temperature of the thermostat
switches back to T0.

t

T

τ

∆T

tw

τ

τ

τ
τ

τ

τ

We keep τ fixed and we draw ∆T and tw from exponential probabil-
ity distributions with given ⟨∆T ⟩ and ⟨tw⟩. If

τ < trel and ⟨tw⟩ < trel

where trel is the relaxation time in the corona, the coronal plasma
never relaxes to thermal equilibrium: it rather reaches a
non-equilibrium stationary state with suprathermal tails in the
particles’ velocity distribution functions, always exhibiting inverted
temperature and density profiles due to velocity filtration.

Model

We use a mean-field approximation for the electrostatic interaction
between the particles of the coronal plasma, which are subjected to
a constant downward gravity and to the Pannekoek-Rosseland field
which ensures charge neutrality, whose combined effect is proportional
to (mi +me)/2. The equations of motion are

mαẍj,α = eαE(xj,α) + g
me +mi

2
sin

(
πxj,α
2L

)
,

where x ∈ [−L,L] is the coordinate along the loop, j = 1, . . . , 2N
numbers the particles, α = e, i denotes the species, g = GM⊙/R2

⊙ is
the Sun’s gravity, and

E(x) = 8
|eα|
S

N (qi − qe) sin

(
πx

L

)

is the self-consistent electric field, with

qα =
1

2N

2N∑

j=1

cos

(
πxj,α
L

)

the “stratification parameter” for each species: qα = 0 corresponds
to a uniform distribution of particles, qα = −1 to a distribution con-
centrated at the base of the loop. The difference qi − qe measures the
charge imbalance giving rise to the electric field.
When expressed in terms of dimensionless variables, the equations of
motion depend only on three dimensionless parameters: the mass ra-
tio M = mi/me and the ratios of the electrostatic and gravitational
energies to the thermal energy,

C =
8ne2L2

πkBT0
and g̃ =

gL(mi +me)

2πkBT0
,

where n is the the average number density of each species and kB is
the Boltzmann constant. We solve the equations of motions coupled
to the fluctuating thermostat and find that the value of C only af-
fects the transient towards the stationary state. Therefore we use C
much smaller than a realistic value to avoid prohibitively small time
steps. For all the other parameters we choose realistic values, i.e.,
M = 1836, n ≃ 1010 cm−3, L = π × 104 km, T0 = 104 K.

Numerical simulations

Remarkably, the distribution functions fα(ϑ, p) of ions and electrons,
with ϑ and p the dimensionless position and momentum, in the non-
equilibrium stationary state can be explicitly calculated, even
regardless of the specific form of the electrostatic interaction and not
only in the mean-field approximation (Barbieri et al. 2024). We com-
pute the average energy flux entering the loop due to the thermostat
as

JIN = (1− A)J1 + A⟨J1+∆T ⟩
where Jζ is the flux when the thermostat has temperature ζ (in units
of T0) and

A =
τ

τ + ⟨tw⟩
is the fraction of time in which T ̸= T0; averages are over the relevant
probabilty distributions. We then fix the distribution functions at the
feet of the loop by imposing JIN = JOUT, where JOUT is the energy
flux coming out of the loop, and compute fα(ϑ, p) using Jeans’ theo-
rem, since in our model the coronal plasma is collisionless and obeys
the Vlasov equation. We find

fα(ϑ, p) = Nα


(1− A)

e−Hα(ϑ,p)

Mα
+ A

∫ +∞

0
dζ γ(ζ)

e
−Hα(ϑ,p)

1+ζ

(1 + ζ)Mα


 ,

where Nα is a normalization, Hα(ϑ, p) is the single-particle Hamil-
tonian of each species and γ is the probability distribution of the
temperature increments in the thermostat.
This result shows that the stationary distribution function is given
by a thermal distribution at temperature T = T0 plus a non-thermal
contribution arising from the average of thermal distributions at
T ̸= T0 over the probability distribution of the temperature fluctu-
ations. The weight of the non-thermal contribution is proportional
to A. The thermal population dominates at small heights z, and is
depressed by the gravity term in Hα when increasing z; conversely,
the non-thermal contribution becomes more and more relevant at
larger z due to velocity filtration, because faster particles can climb
higher in the potential well, showing up as suprathermal tails in the
distribution (see the figure in the next column).

Theory

Constraints on the thermostat temperature fluctuations:

•A ≪ 1 =⇒ τ ≪ ⟨tw⟩ to have T ≃ T0 at chromospheric heights

• ⟨∆T ⟩ ≃ 102 T0 to have a million-Kelvin corona

very short-lived and intense heating events

The solar atmosphere

A = 0.02 ⟨∆T ⟩ = 90T0

Temperature and density profiles
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is fixed imposing equality of the incoming and outgoing fluxes
at the feet of the loop, that is, JIN,↵ = JOUT,↵, with

JOUT,↵ =

Z 0

�1
dp p f↵(±⇡, p). (10)

The DFs f↵(#, p) in the stationary state can be obtained using
the distribution at the boundary combined with the Jeans theo-
rem Barbieri et al. (in prep.) because the level sets of the single-
particle Hamiltonian (9) are always connected to the bottom
boundary (i.e., the thermostat), expressed as

f↵(#, p) = N↵
26666664(1 � A)

e�H↵(#,p)

M↵
+ A

Z +1

0
d⇣ �(⇣)

e�
H↵ (#,p)

1+⇣

(1 + ⇣)M↵

37777775 ,

(11)

where N↵ values are such that
R +1
�1 dp

R ⇡
�⇡ d# f↵(#, p) = 1. The

interpretation of Eq. (11) is as follows: the stationary DF is given
by a thermal distribution at temperature T = 1, plus a non-
thermal contribution arising from the average of thermal dis-
tributions at T = 1 + ⇣ over the probability distribution �(⇣)
of the temperature fluctuations. The weight of the non-thermal
contribution is proportional to A, the fraction of time in which
the thermostat is not at temperature T = 1. The thermal popula-
tion dominates at small heights z, and is depressed by the grav-
ity term in H↵ when increasing z; conversely, the non-thermal
contribution becomes more and more relevant at larger z due to
velocity filtration, because faster particles can climb higher in
the potential well, showing up as suprathermal tails in the dis-
tribution. This is shown in Fig. 3, where the VDFs of electrons
normalized by the density are plotted at three increasing heights,
z = 2.3, 3.9, 11⇥103 km from bottom to top, corresponding to the
base of the transition region, the middle transition region, and the
corona, respectively. Red, blue, and green curves are obtained
from the simulation, while grey curves are the theoretical pre-
dictions of Eq. (11). We note that VDFs are plotted as functions
of the signed kinetic energy sign(p) p2/2 in a semilogarithmic
scale, so that a thermal distribution (a Gaussian) appears as a
triangle symmetric about zero. The VDFs are always composed
of a thermal core at small velocities plus a suprathermal tail at
larger velocities. As the height increases, the thermal core pro-
gressively shrinks and almost disappears in the corona, where the
VDF is basically suprathermal. These VDFs explain the shape of
the temperature and density profiles reported in Fig. 2, where the
grey curves are the theoretical prediction obtained with Eq. (11).
The sharp temperature rise in the transition region (and den-
sity decrease) is caused by the dramatic change in the shape of
the VDF that passes from being nearly thermal to almost com-
pletely suprathermal. Once coronal heights are reached, totally
non-thermal VDFs produce a gentler variation of temperature
and density, similar to the case described in Scudder (1992a,b).
For completeness, the stationary values of kinetic energies and
stratification parameters computed using Eq. (11) are drawn with
black horizontal lines in Fig. 1.

5. Discussion and conclusions

We present a kinetic model of the solar atmosphere, where the
collisonless coronal plasma is in steady contact with a thermo-
stat mimicking a completely collisional chromosphere. The ana-
lytical and numerical results consistently show that in response
to intermittent rapid and short-lived increments of the chro-
mospheric temperature, suprathermal tails in the VDFs natu-
rally form and gravitational filtering causes a sharp temperature
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Fig. 3. Electron VDFs (color curves) normalized by the electron den-
sities as a function of the signed kinetic energy, at di↵erent heights
(see labels). Theoretical VDFs computed from Eq. (11) are plotted as
thick grey lines. Ion VDFs (not shown) are the same if plotted against
sign(p)p2/2M. In the bottom panel, a magnification of the central region
of the same VDFs is shown to highlight the disappearance of the
Gaussian profile.

rise and density decrease in the above atmosphere, consisting
of a (thicker than observed) transition region, followed by an
extended corona at roughly 106 K.

Suprathermal electrons, along with a thermal population,
are measured in situ in the solar wind (Pilipp et al. 1987;
Halekas et al. 2020; Maksimovic et al. 2020). Their presence in
the transition region (Dudík et al. 2017) or in flaring regions
(Polito et al. 2018) is also compatible with remote sensing obser-
vations of non-thermal line widths, but their direct detection is
still challenging. Our model supports the formation of a non-
thermal population already at the base of the corona for closed
loop geometry. We expect our mechanism to be valid also in
the case of open field lines, thus favouring the formation of
the solar wind by gravitational filtering as in exospheric mod-
els (Jockers 1970; Lemaire & Scherer 1971; Lamy et al. 2003;
Maksimovic et al. 1997; Zouganelis et al. 2004). However, in an
open spherical geometry, there are also escaping particles, form-
ing the wind, and “trapped particles” (whose trajectories never
reach the base); thus, a more complex formalism would be nec-
essary to tackle this case (Zouganelis et al. 2004).

One aspect that is fundamental in achieving temperature
inversion is that the coronal plasma is in a non-equilibrium sta-
tionary state. This requires the chromosphere to maintain any
given temperature for intervals much shorter than the relax-
ation time of electrons in the corona, tR, which in our model,
is expected to be the shortest between the sound travel time
and the free fall time, that is, roughly 10 s for the parame-
ters we considered above. To reach temperatures around 106 K
in the corona, while keeping temperatures around 104 K at the
base of the transition region, the mean of the chromospheric
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• Theoretical profiles are similar to the averaged observed ones but
for a thicker transition region

• trel ≈ 10÷ 30 s (loop crossing time) =⇒ ⟨tw⟩ ≃ 1 s, τ ≃ 10−2 s
currently unresolved fluctuations, yet compatible with average
chromospheric temperatures of 11000 K (Molnar et al. 2019)

Observations?

A million-Kelvin corona and a (thick) transition region
can be formed out of a collisional, albeit dynamic, chromosphere,
without any local deposition of heat in the corona, and with-
out invoking non-thermal distributions in the chromosphere.

Take-homemessage

• Include collisions (and magnetic fields) in corona (maybe finding
a sharper transition region?)

• Find out physical processes yielding sufficiently fast and intense
heating events in the chromosphere (maybe observe them!)

What next?

Barbieri, L., et al. 2024, arXiv:2401.10713
Molnar, M. E., et al. 2019, ApJ 881, 99
Scudder, J. D. 1992a, ApJ 398, 299
Scudder, J. D. 1992b, ApJ 398, 319

do you want to find out more?

L. Barbieri, L. Casetti, A. Verdini, and S. Landi,
A&A 681, L5 (2024)

contacts: lapo.casetti@unifi.it
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Fig. 1. Schematics of the loop model. The coronal plasma in the loop
is treated as collisionless and in thermal contact with a fully collisional
chromosphere (modeled as a thermostat).

sequence stars? How are these profiles affected by the mass of
the star?

The paper is structured as follows. In Sec. 2 we briefly re-
view the plasma atmosphere model proposed by Barbieri et al.
(2024a,b): more specifically, in Sec. 2.1 we describe the model
and define its parameters, and in Sec. 2.2 we discuss the mecha-
nism according to which the model produces a transition region
and a hot corona, defining a quantity that discriminates the range
of parameters in which a transition region and a corona do ac-
tually form from those in which they do not, and which will be
useful in the following. In Sec. 3 we apply the theoretical frame-
work to main-sequence stars and we present and discuss the re-
sults, focusing on the case of low-mass stars (M < 1.5 M⊙; the
case of higher-mass stars is considered in Appendix A). Finally,
in Sec. 4 we summarise our findings and hint at some possible
follow-ups of the present work.

2. The model

2.1. Model description

Here we briefly summarise the model of the plasma atmosphere
introduced by Barbieri et al. (2024a,b). A coronal loop in the at-
mosphere of a star is modeled as a semicircular tube of length
2L made up of a two-component (electrons and protons), colli-
sionless electrostatic plasma subjected to an external force field
consisting of a constant gravity plus an electric field ensuring
charge neutrality and proportional to g(me + mp)/2, where me
and mp are the masses of the electrons and of the ions, respec-
tively (Pannekoek 1922; Rosseland 1924; Belmont et al. 2013),
and g = GM/R2 is the surface gravity with M and R the mass
and radius of the star, respectively. Particles are allowed to move
only along the loop. This structure is assumed to be in ideal ther-
mal contact with a thermostat that mimics the fully collisional
chromosphere. A scheme of the model is shown in figure 1. If
the temperature Tb of the thermostat (i.e., of the chromosphere)
is constant, the coronal loop is in thermal equilibrium at the same
temperature of the thermostat. However, as mentioned in the In-
troduction, the chromosphere is a very dynamic environment;
therefore, we assume that its temperature fluctuates due to heat-
ing events of amplitude ∆T and duration τ, separated by waiting
times tw during which the temperature of the thermostat switches
back to Tb. A sketch of the time series of the temperature of the
thermostat is depicted in figure 2. We keep τ fixed and we draw
∆T and tw from probability distributions. If the following condi-
tions are fulfilled,

τ < tr and ⟨tw⟩η < tr, (1)
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where tr is the relaxation time in the corona and ⟨·⟩η is the av-
erage over a given probability distribution η, then the coronal
plasma never relaxes to thermal equilibrium: it rather reaches
a stationary state always exhibiting inverted temperature and
density profiles. The relaxation time tr can be estimated as the
minimum between the thermal crossing time tT and the free-fall
crossing time tg of the electrons, i.e.,

tr = min(tT ; tg) , (2)

where

tT = 2L
√

me

kB⟨T ⟩γ
and tg =

√
2Lme

g(me + mp)
. (3)

In Eq. (3) above, ⟨T ⟩γ is the average of T over a given probability
distribution γ of temperature increments and kB is the Boltzmann
constant.

Since the coronal plasma dynamics is treated as collisionless,
the time evolution of the distribution functions of both species
obeys Vlasov equations (see e.g. Nicholson 1983). By time av-
eraging the Vlasov dynamics and the fluctuating thermostat over
a timespan long enough to encompass many temperature incre-
ments, it is possible to analytically calculate the full phase-space
distribution functions in the steady state (for details see Barbieri
et al. 2024b). The resulting expressions for the single-particle
phase space distribution functions fe and fp of electrons and
ions, respectively, are

fα(x, v) = Nα

(1 − A)
e−

Hα (x,v)
kBTb

Tb
+ A

∫ +∞

Tb

dT γ(T )
e−

Hα (x,v)
kBT

T

 , (4)

where α = e or p, the constant A is given by

A =
τ

τ + ⟨tw⟩η
, (5)

and Hα is the single particle energy of the species α, i.e.,

Hα =
mαv2

2
+ g

me + mp

2
z (6)

where v is the particle velocity and

z = 2
L
π

cos
(
πx
2L

)
(7)
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The temperature of the solar atmosphere increases from thousands
to millions of degrees moving from the lower layer (chromosphere)
to the outermost one (corona), while the density drops accordingly:
this is referred to as temperature inversion. The two layers are
connected by the transition region, a very thin interface that sees
temperature and density variations of orders of magnitude. The
mechanism behind the coronal heating is still largely unknown.

Is the corona in thermal equilibrium?

Assuming local thermodynamic equilibrium, a hot corona
can form only upon the local deposition of heat in the upper layer.
However, there are some theoretical/observational indications that
the plasma in the corona and in the transition region may not be
in local thermodynamic equilibrium. This allows to obtain
temperature inversion without local deposition of heat in the
upper layer, as first recognized by Scudder (1992a,b), who showed
that if the velocity distribution functions of electrons and ions in the
chromosphere are non-Maxwellian with suprathermal tails, then
temperature must increase with height: faster particles are
able to climb higher in the Sun’s gravity well and temperature in-
creases thanks to “gravitational velocity filtration.” However,
non-thermal distributions in the highly collisional chromo-
spheric plasma are difficult to justify, and Scudder’s model
produces a smooth increase of the temperature with height without a
transition region.

The coronal heating problem

We model a coronal loop as a collisionless plasma in thermal
contact with a thermostat mimicking the collisional chromo-
spheric plasma.

coronal loop (collisionless)

chromosphere (fully collisional)

thermal contact

If the thermostat (chromosphere) temperature is constant, the
coronal loop is isothermal, at the same temperature T0 of the ther-
mostat. But the chromosphere is a very dynamic environment,
therefore we assume that its temperature fluctuates due to random
heating events of amplitude ∆T and duration τ , separated by
waiting times tw during which the temperature of the thermostat
switches back to T0.
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We keep τ fixed and we draw ∆T and tw from exponential probabil-
ity distributions with given ⟨∆T ⟩ and ⟨tw⟩. If

τ < trel and ⟨tw⟩ < trel

where trel is the relaxation time in the corona, the coronal plasma
never relaxes to thermal equilibrium: it rather reaches a
non-equilibrium stationary state with suprathermal tails in the
particles’ velocity distribution functions, always exhibiting inverted
temperature and density profiles due to velocity filtration.

Model

We use a mean-field approximation for the electrostatic interaction
between the particles of the coronal plasma, which are subjected to
a constant downward gravity and to the Pannekoek-Rosseland field
which ensures charge neutrality, whose combined effect is proportional
to (mi +me)/2. The equations of motion are

mαẍj,α = eαE(xj,α) + g
me +mi

2
sin

(
πxj,α
2L

)
,

where x ∈ [−L,L] is the coordinate along the loop, j = 1, . . . , 2N
numbers the particles, α = e, i denotes the species, g = GM⊙/R2

⊙ is
the Sun’s gravity, and
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|eα|
S

N (qi − qe) sin
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πx

L

)

is the self-consistent electric field, with

qα =
1

2N

2N∑

j=1

cos

(
πxj,α
L

)

the “stratification parameter” for each species: qα = 0 corresponds
to a uniform distribution of particles, qα = −1 to a distribution con-
centrated at the base of the loop. The difference qi − qe measures the
charge imbalance giving rise to the electric field.
When expressed in terms of dimensionless variables, the equations of
motion depend only on three dimensionless parameters: the mass ra-
tio M = mi/me and the ratios of the electrostatic and gravitational
energies to the thermal energy,

C =
8ne2L2

πkBT0
and g̃ =

gL(mi +me)

2πkBT0
,

where n is the the average number density of each species and kB is
the Boltzmann constant. We solve the equations of motions coupled
to the fluctuating thermostat and find that the value of C only af-
fects the transient towards the stationary state. Therefore we use C
much smaller than a realistic value to avoid prohibitively small time
steps. For all the other parameters we choose realistic values, i.e.,
M = 1836, n ≃ 1010 cm−3, L = π × 104 km, T0 = 104 K.

Numerical simulations

Remarkably, the distribution functions fα(ϑ, p) of ions and electrons,
with ϑ and p the dimensionless position and momentum, in the non-
equilibrium stationary state can be explicitly calculated, even
regardless of the specific form of the electrostatic interaction and not
only in the mean-field approximation (Barbieri et al. 2024). We com-
pute the average energy flux entering the loop due to the thermostat
as

JIN = (1− A)J1 + A⟨J1+∆T ⟩
where Jζ is the flux when the thermostat has temperature ζ (in units
of T0) and

A =
τ

τ + ⟨tw⟩
is the fraction of time in which T ̸= T0; averages are over the relevant
probabilty distributions. We then fix the distribution functions at the
feet of the loop by imposing JIN = JOUT, where JOUT is the energy
flux coming out of the loop, and compute fα(ϑ, p) using Jeans’ theo-
rem, since in our model the coronal plasma is collisionless and obeys
the Vlasov equation. We find

fα(ϑ, p) = Nα


(1− A)

e−Hα(ϑ,p)

Mα
+ A

∫ +∞

0
dζ γ(ζ)

e
−Hα(ϑ,p)

1+ζ

(1 + ζ)Mα


 ,

where Nα is a normalization, Hα(ϑ, p) is the single-particle Hamil-
tonian of each species and γ is the probability distribution of the
temperature increments in the thermostat.
This result shows that the stationary distribution function is given
by a thermal distribution at temperature T = T0 plus a non-thermal
contribution arising from the average of thermal distributions at
T ̸= T0 over the probability distribution of the temperature fluctu-
ations. The weight of the non-thermal contribution is proportional
to A. The thermal population dominates at small heights z, and is
depressed by the gravity term in Hα when increasing z; conversely,
the non-thermal contribution becomes more and more relevant at
larger z due to velocity filtration, because faster particles can climb
higher in the potential well, showing up as suprathermal tails in the
distribution (see the figure in the next column).

Theory

Constraints on the thermostat temperature fluctuations:

•A ≪ 1 =⇒ τ ≪ ⟨tw⟩ to have T ≃ T0 at chromospheric heights

• ⟨∆T ⟩ ≃ 102 T0 to have a million-Kelvin corona

very short-lived and intense heating events

The solar atmosphere

A = 0.02 ⟨∆T ⟩ = 90T0

Temperature and density profiles
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is fixed imposing equality of the incoming and outgoing fluxes
at the feet of the loop, that is, JIN,↵ = JOUT,↵, with

JOUT,↵ =

Z 0

�1
dp p f↵(±⇡, p). (10)

The DFs f↵(#, p) in the stationary state can be obtained using
the distribution at the boundary combined with the Jeans theo-
rem Barbieri et al. (in prep.) because the level sets of the single-
particle Hamiltonian (9) are always connected to the bottom
boundary (i.e., the thermostat), expressed as

f↵(#, p) = N↵
26666664(1 � A)

e�H↵(#,p)

M↵
+ A

Z +1

0
d⇣ �(⇣)

e�
H↵ (#,p)

1+⇣

(1 + ⇣)M↵

37777775 ,

(11)

where N↵ values are such that
R +1
�1 dp

R ⇡
�⇡ d# f↵(#, p) = 1. The

interpretation of Eq. (11) is as follows: the stationary DF is given
by a thermal distribution at temperature T = 1, plus a non-
thermal contribution arising from the average of thermal dis-
tributions at T = 1 + ⇣ over the probability distribution �(⇣)
of the temperature fluctuations. The weight of the non-thermal
contribution is proportional to A, the fraction of time in which
the thermostat is not at temperature T = 1. The thermal popula-
tion dominates at small heights z, and is depressed by the grav-
ity term in H↵ when increasing z; conversely, the non-thermal
contribution becomes more and more relevant at larger z due to
velocity filtration, because faster particles can climb higher in
the potential well, showing up as suprathermal tails in the dis-
tribution. This is shown in Fig. 3, where the VDFs of electrons
normalized by the density are plotted at three increasing heights,
z = 2.3, 3.9, 11⇥103 km from bottom to top, corresponding to the
base of the transition region, the middle transition region, and the
corona, respectively. Red, blue, and green curves are obtained
from the simulation, while grey curves are the theoretical pre-
dictions of Eq. (11). We note that VDFs are plotted as functions
of the signed kinetic energy sign(p) p2/2 in a semilogarithmic
scale, so that a thermal distribution (a Gaussian) appears as a
triangle symmetric about zero. The VDFs are always composed
of a thermal core at small velocities plus a suprathermal tail at
larger velocities. As the height increases, the thermal core pro-
gressively shrinks and almost disappears in the corona, where the
VDF is basically suprathermal. These VDFs explain the shape of
the temperature and density profiles reported in Fig. 2, where the
grey curves are the theoretical prediction obtained with Eq. (11).
The sharp temperature rise in the transition region (and den-
sity decrease) is caused by the dramatic change in the shape of
the VDF that passes from being nearly thermal to almost com-
pletely suprathermal. Once coronal heights are reached, totally
non-thermal VDFs produce a gentler variation of temperature
and density, similar to the case described in Scudder (1992a,b).
For completeness, the stationary values of kinetic energies and
stratification parameters computed using Eq. (11) are drawn with
black horizontal lines in Fig. 1.

5. Discussion and conclusions

We present a kinetic model of the solar atmosphere, where the
collisonless coronal plasma is in steady contact with a thermo-
stat mimicking a completely collisional chromosphere. The ana-
lytical and numerical results consistently show that in response
to intermittent rapid and short-lived increments of the chro-
mospheric temperature, suprathermal tails in the VDFs natu-
rally form and gravitational filtering causes a sharp temperature
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Fig. 3. Electron VDFs (color curves) normalized by the electron den-
sities as a function of the signed kinetic energy, at di↵erent heights
(see labels). Theoretical VDFs computed from Eq. (11) are plotted as
thick grey lines. Ion VDFs (not shown) are the same if plotted against
sign(p)p2/2M. In the bottom panel, a magnification of the central region
of the same VDFs is shown to highlight the disappearance of the
Gaussian profile.

rise and density decrease in the above atmosphere, consisting
of a (thicker than observed) transition region, followed by an
extended corona at roughly 106 K.

Suprathermal electrons, along with a thermal population,
are measured in situ in the solar wind (Pilipp et al. 1987;
Halekas et al. 2020; Maksimovic et al. 2020). Their presence in
the transition region (Dudík et al. 2017) or in flaring regions
(Polito et al. 2018) is also compatible with remote sensing obser-
vations of non-thermal line widths, but their direct detection is
still challenging. Our model supports the formation of a non-
thermal population already at the base of the corona for closed
loop geometry. We expect our mechanism to be valid also in
the case of open field lines, thus favouring the formation of
the solar wind by gravitational filtering as in exospheric mod-
els (Jockers 1970; Lemaire & Scherer 1971; Lamy et al. 2003;
Maksimovic et al. 1997; Zouganelis et al. 2004). However, in an
open spherical geometry, there are also escaping particles, form-
ing the wind, and “trapped particles” (whose trajectories never
reach the base); thus, a more complex formalism would be nec-
essary to tackle this case (Zouganelis et al. 2004).

One aspect that is fundamental in achieving temperature
inversion is that the coronal plasma is in a non-equilibrium sta-
tionary state. This requires the chromosphere to maintain any
given temperature for intervals much shorter than the relax-
ation time of electrons in the corona, tR, which in our model,
is expected to be the shortest between the sound travel time
and the free fall time, that is, roughly 10 s for the parame-
ters we considered above. To reach temperatures around 106 K
in the corona, while keeping temperatures around 104 K at the
base of the transition region, the mean of the chromospheric
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• Theoretical profiles are similar to the averaged observed ones but
for a thicker transition region

• trel ≈ 10÷ 30 s (loop crossing time) =⇒ ⟨tw⟩ ≃ 1 s, τ ≃ 10−2 s
currently unresolved fluctuations, yet compatible with average
chromospheric temperatures of 11000 K (Molnar et al. 2019)

Observations?

A million-Kelvin corona and a (thick) transition region
can be formed out of a collisional, albeit dynamic, chromosphere,
without any local deposition of heat in the corona, and with-
out invoking non-thermal distributions in the chromosphere.

Take-homemessage

• Include collisions (and magnetic fields) in corona (maybe finding
a sharper transition region?)

• Find out physical processes yielding sufficiently fast and intense
heating events in the chromosphere (maybe observe them!)

What next?

Barbieri, L., et al. 2024, arXiv:2401.10713
Molnar, M. E., et al. 2019, ApJ 881, 99
Scudder, J. D. 1992a, ApJ 398, 299
Scudder, J. D. 1992b, ApJ 398, 319

do you want to find out more?

L. Barbieri, L. Casetti, A. Verdini, and S. Landi,
A&A 681, L5 (2024)

contacts: lapo.casetti@unifi.it
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Fig. 2. Sketch of the time series of the temperature of the thermostat
(chromosphere). During the time intervals of duration τ the temperature
increases by an amount ∆T and during the waiting times tw it returns to
the typical chromospheric value Tb.

is the height upon the surface at a given position corresponding
to a curvilinear abscissa x ∈ [−L, L] along the loop.

The constantsNα are normalisation constants, so that the dis-
tribution functions fα are normalised to 1.

The interpretation of Eq. (4) is as follows: the distribution
functions in the stationary state are given by a thermal distri-
bution at temperature Tb (the reference temperature of the ther-
mostat) plus a non-thermal contribution resulting from the av-
erage of thermal distributions at a temperature T > Tb over
the probability distribution γ(T ) of the temperature increments.
The weight of the non-thermal contribution is proportional to A,
which is the fraction of time the thermostat is not at tempera-
ture T = Tb, i.e., the fraction of time in which the chromosphere
is actually heated. The thermal population dominates at small
heights z and is suppressed by the gravitational term in Hα as z
increases; conversely, the non-thermal contribution becomes in-
creasingly relevant at larger z due to velocity filtration, as faster
particles can climb higher in the potential well and appear as
suprathermal tails in the distribution functions.

To perform the calculations, we choose the distributions of
the temperature increments, γ, to be an exponential distribution,

γ(T ) =
1
⟨∆T ⟩

e−
T−Tb
⟨∆T ⟩ , T > Tb , (8)

where ⟨∆T ⟩ = ⟨T − Tb⟩γ is the mean value of the temperature
increments.

This is the simplest choice guaranteeing that large tempera-
ture increments are less likely than small ones, as suggested, for
instance, by the fact that the so-called “campfires” recently ob-
served in extreme UV solar imaging have temperatures of about
106 K, while explosive events appearing in Hα line widths have
smaller temperatures, about 2 × 105 K, but are ten times more
frequent (Teriaca et al. 2004). However, Barbieri et al. (2024b)
have shown that the precise choice of the distribution γ(T ) is not
very relevant, since the stationary state always exhibits tempera-
ture inversion, regardless of the choice of the distribution of the
temperature increments. The choice of the distribution η(tw) of
the waiting times between temperature increments is even less
relevant, since it enters Eq. (4) only through the constant A de-
fined in Eq. (5), which in turn depends only on ⟨tw⟩η, i.e., on the
average value of tw.

Once the functional form of the probability distribution γ
is fixed, the distribution functions, Eq. (4), from which all the
physical quantities in the stationary state can be derived only de-
pend on three parameters: the surface gravity g, the average of
the temperature increments ⟨∆T ⟩ and the fraction of time A the
thermostat spends at a temperature larger than the reference one.
Choosing the following set of units,

v0 =

√
kBTb

me
, m0 = me, L0 =

L
π
. (9)

which imply that the unit of energy is E0 = kBTb, where Tb is
the unit of temperature, the two parameters g and ⟨∆T ⟩ can be
replaced by their dimensionless counterparts g̃ and ∆T̃ . There-
fore, the three dimensionless parameters upon which the model
depends are the constant A given by Eq. (5), the strength g̃ of the
external field in units of thermal energy,

g̃ =
g(me + mp)L

2πkBTb
, (10)

and the average amplitude of temperature increments ∆T̃ mea-
sured in units of the reference temperature Tb of the thermostat,
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∆T̃ =
⟨∆T ⟩

Tb
. (11)

The larger the parameter g̃ defined in Eq. (10) above, the stronger
the stratification of the atmosphere is. Therefore we shall refer to
g̃ as the stratification parameter. If A , 0, the temperature T (z) at
any height z within the loop will be strictly larger than the refer-
ence thermostat temperature Tb. Requiring that the temperature
at the base of the loop, T (z = 0), is fixed and close to the aver-
age observed value at the base of the corona, one gets an implicit
relation between A and ∆T̃ , so that the latter two parameters are
no longer independent and the free parameters of the model are
reduced to two, which can be chosen as g̃ and ∆T̃ . In the fol-
lowing we shall assume, as in (Barbieri et al. 2024a,b), that the
temperature at the base of the corona is 10% larger than Tb, i.e.,
T (z = 0) = 1.1 Tb.

2.2. Transition region and corona

In Sec. 3 and in Appendix A we shall apply the above-described
model to main-sequence stars, asking whether and under which
conditions it predicts the presence of a Sun-like corona in such
stars. To do so, we shall first examine the temperature and den-
sity profiles in two examples and clarify what does it mean, in
the framework of this model, to exhibit a Sun-like corona. Then
we shall introduce an ad-hoc quantity, X, that depends on the pa-
rameters of the model, g̃ and ∆T̃ , and whose value is used to dis-
criminate between the presence or absence of a Sun-like corona
without having to inspect temperature and density profiles.

The temperature T and the number density n can be com-
puted at any point of the loop from the stationary distribution
functions (4) according to the standard kinetic definitions (see
e.g. Nicholson 1983), and turn out to be equal for both species.
We say that the model predicts a Sun-like corona when the vari-
ation of temperature T and the number density n as a function
of the height z within the loop has the following representative
properties, as shown in Fig. 3. First, there is a steep rise in T
and a steep fall in n at small heights, z, i.e. a transition region
forms. Second, at the top of the transition region the density and
temperature have already coronal values, i.e., T ≈ 102 Tb and
n ≈ 10−3 n0. where n0 = n(z = 0) is the density at the base of the
loop. Third, at larger heights, both the temperature increase and
the density decrease are much gentler.

As discussed by Barbieri et al. (2024a,b), these profiles are
very similar to those of the atmosphere of the Sun, but for the
fact that the model predicts a transition region which is thicker
than the observed one. The profiles plotted in Fig. 3 have been
obtained using g̃ = 9 and ∆T̃ = 90. On the contrary, the model
does not predict a Sun-like corona when the profiles are as in
Fig. 4, obtained using g̃ = 2 and ∆T̃ = 90. Here there is no
transition region, because the gradient of both n and T does not
change very much with z, and the temperature reached at the
top of the loop is much smaller than coronal temperature, being
T (z/L0 = 2) ≈ 5 Tb.

Is it possible to define a numerical quantity whose value can
discriminate between the two cases shown in Fig. 3 and 4, re-
spectively? The answer is yes, as we are going to show in the
following. To define such a quantity, we observe that when we
do have a Sun-like corona (Fig. 3), the large-z part of the tem-
perature profile, where T does not vary much with z and is close
to its largest value, is almost completely coming from the right-
most contribution to the distributions function in Eq. (4), i.e., the
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Fig. 3. Temperature and density profiles as a function of the dimension-
less height z/L0 within the loop obtained using g̃ = 9 and ∆T̃ = 90.
Temperature (blue curve) is plotted in units of Tb, while density (red
curve) is plotted in units of the density at the base of the loop, n0 =
n(z = 0). This is an example of Sun-like coronal profiles: for small val-
ues of z there is a steep rise in T (resp. steep fall in n), i.e., a transition
region, at the end of which the values of n and T are already coronal
ones, while for larger z’s T increases (resp. n decreases) in a much gen-
tler way.
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Fig. 4. Temperature and density profiles as in Fig. 3, obtained using
g̃ = 2 and ∆T̃ = 90. This is an example of a situation in which the model
does not predict a Sun-like corona: there is temperature inversion, but
the temperature reached at the top of the loop is much smaller than
typical coronal temperatures and there is no transition region, since both
density and temperature gently vary with z.

integral multiplied by A. Indeed, by setting A = 1 in Eq. (4) with-
out changing any other parameter (which amounts to select only
the second term in Eq. (4)), and computing the temperature as
before, one gets a profile which is essentially overlapping with
the rightmost part of the actual temperature profile (compare the
solid and dashed blue lines in Fig. 5).

This happens because velocity filtration allows only hot par-
ticles originating from the stochastic temperature increments
(the Eq. (4)) to reach the top of the loop. The presence of a tran-
sition region at smaller z’s is a consequence of the rather sharp
transition from a nearly-thermal distribution dominated by the
contribution of the “cold” particles at temperature Tb, that is, the
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Fig. 5. Comparison between the temperature profiles already shown in
Figs. 3 and 4 (solid curves) and the temperature profiles obtained using
the same parameters but setting A = 1 (dashed curves). Blue curves
refer to the case of a Sun-like corona and red curves to the case in which
there is not a Sun-like corona.

leftmost term in Eq. (4), to the strongly non-thermal distribution
of the corona. On the contrary, when the values of the parame-
ters are such that the model does not describe a Sun-like corona,
as in Fig. 3, the velocity filtration mechanism is not so efficient
and the contribution from the “hot” particles never dominates
the distribution function. By computing the temperature setting
A = 1 in this case one obtains a curve whose values are always
much larger than the actual temperatures (compare the solid and
dashed lines in Fig. 5). Therefore, we define the following quan-
tity:

X(g̃,∆T̃ ) =
T (z = zt)

T (z = zt, A = 1)
, (12)

where T (z = zt) is the temperature at the top height z = zt of the
loop (i.e., at z/L0 = 2) while T (z = zt, A = 1) is the temperature
at z = zt computed by keeping the same values of g̃ and ∆T̃
but setting A = 1 in Eq. (4). The above discussion implies that
when X ≈ 1 the model predicts a Sun-like corona, as in the case
depicted in Fig. 3, while if X is definitely smaller than one we
are in the situation of Fig. 4 and the model does not predict a
Sun-like corona. In particular, Fig. 3 corresponds to X = 1 (up
to 2 × 10−5) and Fig. 4 corresponds to X ≃ 0.09. For practical
purposes, we set a threshold at X = 0.9 and say that when X >
0.9 we have a Sun-like corona, while if X < 0.9 we do not.

3. Application to low-mass main-sequence stars

Let us now apply our model to low-mass main-sequence stars,
i.e., stars with M < 1.5 M⊙, for which a Sun-like corona is ex-
pected to be present (in Appendix A we will discuss the case of
larger-mass stars).

In the previous sections we have shown that the predictions
of the model only depend on two dimensionless parameters, g̃
and ∆T̃ . Both dimensionless parameters are fixed by three star
quantities, i.e., the star mass M, the star radius R and the thermo-
stat reference temperature Tb (which we identify with the typical
temperature of the star’s high chromosphere), and by two quanti-
ties defining the model, i.e., the loop length L and the average of
temperature increments ⟨∆T ⟩. Using the scaling relations valid

for low-mass main sequence stars (Eker et al. 2018) we can ex-
press g̃ and ∆T̃ in terms of M, L and ⟨∆T ⟩. To do so, we first use
the scaling law relating the star’s radius to its mass, namely

R
R⊙
= a

(
M
M⊙

)2

+ b
(

M
M⊙

)
+ c , (13)

where R⊙ and M⊙ are the Sun’s radius and mass, respectively,
a = 0.438, b = 0.479, and c = 0.075. We also use the scaling
law that relates the surface temperature T of a star to its mass,
i.e.,

T
T⊙
=

 L
L⊙

(
R
R⊙

)−21/4

, (14)

where T⊙ is the surface temperature of the Sun,

L

L⊙
=

(
M
M⊙

)α
10d , (15)

and the parameters α and d in Eq. (15) are given by

α = 2.028 d = −0.976 if 0.179 <
M
M⊙
< 0.45 ;

α = 4.572 d = −0.102 if 0.45 <
M
M⊙
< 0.72 ;

α = 5.743 d = −0.007 if 0.72 <
M
M⊙
< 1.05 ;

α = 4.329 d = 0.010 if 1.05 <
M
M⊙
< 1.5 .

(16)

Let us now assume that Eq. (14), valid for surface tempera-
tures, also holds for the chromospheric temperatures at the base
of the loop which we take as thermostat reference temperatures
in the model, i.e., Tb, so that we can write

Tb

Tb,⊙
=

 L
L⊙

(
R
R⊙

)−21/4

, (17)

where Tb,⊙ is the reference thermostat temperature for the Sun,
i.e., Tb,⊙ = 104 K, and L/L⊙ is given by Eq. (15). In Fig. 6, Tb
is plotted as a function of M/M⊙. Using Eqs. (13), (15) and (17)
we can write the dimensionless parameter ∆T̃ for a generic star
as a function of the mass M of the star:

∆T̃ =
⟨∆T ⟩
Tb,⊙

10−d/4
(

M
M⊙

)−α/4 a (
M
M⊙

)2

+ b
(

M
M⊙

)
+ c

1/2

. (18)

From now on, we fix the value of the average temperature
increment in Eq. (18) to the one we used to produce the plots on
Figs. 3, 4 and 5, that is, ⟨∆T ⟩ = 9 × 105 K. The reason for this
choice is that with such a value we have a million-Kelvin corona
in the case of the Sun, as shown by Barbieri et al. (2024a,b), and
if we assume that the mechanism producing temperature fluctua-
tions in the chromosphere of a generic main-sequence star is the
same at work on the Sun, it is natural to assume that it produces
the same temperature increments. We shall nonetheless discuss
the effects of varying ⟨∆T ⟩ later, in Sec. 3.2. Finally, using Eqs.
(13) and (17) we express the stratification parameter g̃ in terms
of the mass M of the star and of the loop height zt as

g̃ = α⊙
zt

R
B

(
M
M⊙

)
, (19)
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Fig. 6. Plot of the reference temperature of the thermostat (chromo-
sphere), Tb in Kelvin, as a function of the mass M (in units of solar
mass M⊙). The green curve corresponds to the mass interval 0.179 <
M/M⊙ < 0.45, the red curve to 0.45 < M/M⊙ < 0.72, the blue curve to
0.72 < M/M⊙ < 1.05 and finally the black one to 1.05 < M/M⊙ < 1.5.
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Fig. 7. As in Fig. 6, for the stratification parameter g̃ as given by Eq.
(19) with zt/R = 1/35.

where the function B is

B

(
M
M⊙

)
= 10−d/4

(
M
M⊙

)1− α4
a (

M
M⊙

)2

+ b
(

M
M⊙

)
+ c

−1/2

(20)

and the constant α⊙ is given by

α⊙ =
GM⊙

R⊙

me + mp

4kBTb,⊙
. (21)

A plot of g̃ as a function of M/M⊙ for a fixed value of zt is shown
in Fig. 7.

3.1. Presence of a Sun-like corona

To understand whether the model predicts a Sun-like corona for
low-mass main-sequence stars, in Fig. 8 we plot the values of the
quantity X defined in Eq. (12) as a function of zt/R and M/M⊙.

Fig. 8. Contour plot of X as defined in Eq. (12), computed for low-mass
stars (i.e., M ∈ [0.179M⊙, 1.5 M⊙]). X is plotted as a function of the star
mass M in units of solar mass M⊙ and of the top height of the loop zt
scaled by the star radius R. The red line corresponds to X = 0.9, the
threshold separating the regime without a Sun-like corona (X < 0.9,
bluish colours) from that where there is a Sun-like corona (X > 0.9,
yellowish colours).

In defining the model we made the approximation of constant
gravity, i.e., of a gravity force equal to the value at the surface of
the star throughout the loop. In order for this approximation to
be reasonable, we chose to consider values of zt such that zt/R ≤
0.1. The transition between the two regimes, with and without a
Sun-like hot corona, is marked by the red line corresponding to
the threshold value X = 0.9 in figure 8.

Figure 8 show that, according to the model, all low-mass
main-sequence stars have a million-degree, Sun-like corona, be-
cause coronal conditions are met whenever one gets sufficiently
high in the star’s atmosphere. For solar masses, zt/R > 0.01
is sufficient to have a million-degree corona, and this minimum
height gets smaller for smaller masses, reaching zt/R > 0.0045
when M = 0.179 M⊙.

Inspection of figure 8 shows that it is “easier” to have a Sun-
like corona as the mass decreases, until M = 0.5M⊙; for smaller
masses, this trend reverses. This is a consequence of the fact that
larger values of g̃ favour the presence of a Sun-like corona and
indeed g̃ rapidly increases passing from 1.5M⊙ to 0.5M⊙, and
then starts decreasing for smaller masses, as can be seen in figure
7. In all the mass regime the minimum height to reach coronal
conditions (i.e., such that X > 0.9) is always much smaller than
0.1 R, therefore the approximation of constant gravity is well jus-
tified.

In order to show how the density and temperature profiles
depend on M, we set zt/R = 1/35, i.e., a value such that X > 0.9
for any value of M, and we plot in figure 9 the temperature T
(in Kelvin) and the density n (in units of the density n0 at the
base of the loop) as a function of the height z within the loop
(in units of L0 = L/π, as in Figs. 3 and 4). Figure 9 shows that
although the temperature at the base of the loop increases with
the mass M of the star (as implied by Eqs. (14) and (17) and
shown in Fig. 6) the temperature at the top is about one mil-
lion degrees for all the values of M; this is due to the fact that
the “cold” particles are gravitationally filtered out in the corona,
leaving only the “hot” particles generated by the temperature in-
crements at ∆T = 9 × 105 K. Moreover, figure 9 shows that for
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Fig. 9. Density n (in units of the density at the base of the loop, n0 =
n(z = 0)) and temperature T (in Kelvin) as a function of the height z
within the loop, scaled by L0 = L/π (where 2L is the loop length), for
some values of the mass in the range 0.179 < M/M⊙ < 1.5. Here we
choose zt/R = 1/35, such that X > 0.9 for all the values of M and there
always is a Sun-like corona. Solid lines correspond to temperatures and
dashed lines to densities. The green curves are computed for a star with
mass M = 0.3 M⊙, the red ones for M = 0.6 M⊙, the blue ones for
M = 0.8 M⊙ and the black ones for M = 1.2 M⊙.

low-mass stars the transition region becomes steeper and steeper
as the mass of star M decreases. This can be understood by look-
ing at Fig. 8. The red level curve corresponding to the threshold
X = 0.9 moves towards smaller values of zt as the mass of the
star decreases and the level curves of X become denser. As a con-
sequence, g̃ increases as M decreases, as we already noted above.
Equation (4) in turn implies that as g̃ increases, the population of
“cold” particles thermally distributed at the mean chromospheric
temperature Tb is more and more exponentially depressed with
height z. Therefore, by increasing the value of g̃ we expect an
increasingly steep transition region. The density profile is anti-
correlated with that of the temperature for all the values of M.
The coronal density (in units of the density at the base of the
loop, n0) decreases with M, again because g̃ increases: given the
density at the base, by increasing the value of g̃ fewer and fewer
particles can reach the top of the loop, and the coronal density
decreases. This notwithstanding, the density drop in the corona
with respect to the density at the base of the loop is never much
larger than that on the Sun, being between three and four orders
of magnitudes.

3.2. Amplitude of temperature fluctuations

Throughout our discussion we have set the parameter ⟨∆T ⟩ =
⟨∆T⊙⟩ = 9×105 K based on the assumption that the physical pro-
cesses responsible for stochastic temperature increments in the
high chromosphere of a generic main-sequence star are the same
acting on the Sun and producing a million-Kelvin corona (see
Barbieri et al. 2024a,b). In our model, the value of ⟨∆T ⟩ is cru-
cial to determine the coronal temperature: choosing, say, values
an order of magnitude larger or smaller would shift the result-
ing coronal temperature accordingly. Therefore, if we think that
main-sequence stars’ coronae have temperatures similar to the
Sun’s corona, the choice we made for ⟨∆T ⟩ seems appropriate.
This notwithstanding, one may wonder whether the values of the
average temperature fluctuations only settle the coronal tempera-
ture or influence also other properties of the coronal temperature

Fig. 10. Contour plot of X computed using Eq. (12) as a function of the
dimensionless intensity of the temperature increments ∆T̃ and of the
stratification parameter g̃. The red solid line corresponds to the thresh-
old value X = 0.9 separating the region of parameters in which the
model predicts a Sun-like transition region and corona (X > 0.9, yel-
lowish colours) from that where it does not (X < 0.9, bluish colours).
The magenta horizontal line is the maximum value of g̃ as a function of
M.

and density profiles. To answer this question, in Fig. 10 we plot X
as a function of g̃ and ∆T̃ ; the latter is the dimensionless param-
eter directly related to ⟨∆T ⟩, see Eq. 18. We consider over three
decades of ∆T̃ , showing that the specific value of ∆T̃ does not
strongly affect the transition between the region where X < 0.9
(so that no Sun-like transition region is present) and the region
where X > 0.9 (where we have a Sun-like transition region and a
corona). The threshold between the two regions, marked by the
red curve in Fig. 10, stays almost constant as a function of ∆T̃
in a range of g̃ values that includes the maximum value of g̃ for
low-mass stars. Maximum of g̃ has been evaluated from Eq. (19)
within the range of M and zt considered above. Therefore, the
specific value of ∆T̃ does not have a strong impact on the prop-
erties of the temperature profiles (e.g., on the size and shape of
the transition region).

3.3. Relaxation and fluctuation timescales

The model is valid only if the timescales of the fluctuating ther-
mostat are fast enough to prevent the coronal plasma from relax-
ing towards a thermal equilibrium state, i.e., if conditions (1) are
satisfied. However, these timescales depend on the mass of the
star. For a given main-sequence star of mass M, the relaxation
time tr is still defined by Eq. (2), with tT now given by

tT =
zt

zt,⊙

√
⟨∆T⊙⟩
⟨∆T ⟩

tT⊙ with tT⊙ = 2L⊙

√
me

kB⟨∆T⊙⟩
, (22)

and tg by

tg =
√

zt

zt,⊙

√
M⊙
M

R
R⊙

tg⊙ with tg⊙ =

√
2L⊙me

g⊙(me + mp)
, (23)

where tT,⊙ and tg,⊙ are the thermal and gravitational crossing
times for the case of the Sun and we have assumed, as above,
⟨∆T ⟩ = ⟨∆T⊙⟩. Using L⊙ = π×109 cm (typical for coronal loops
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in the Sun’s atmosphere) and ⟨∆T⊙⟩ = 9 × 105 K, as done by
Barbieri et al. (2024a), to calculate the relaxation time scale for
the Sun as tr⊙ = min[tT⊙ , tg⊙ ] we obtain tr⊙ ≈ 10 s. For low-mass
main-sequence stars, considering the same range of values of zt
as in Fig. 8, we get 0.1 tr⊙ ≤ tr ≤ 7 tr⊙ . Therefore, we obtain
values of the relaxation time between 1 s and 70 s, i.e., within
two orders of magnitude from those of the Sun for all low-mass
main-sequence stars.

4. Conclusions and perspectives

We have investigated the role of stochastic temperature fluctua-
tions in the high chromosphere in shaping the temperature and
density profiles of the coronae of main-sequence stars. We have
used a model of a plasma atmosphere confined by the magnetic
field (i.e., made up of coronal loops) in thermal contact with the
chromosphere, the latter being modelled as a thermostat with
fluctuating temperature. This model was recently put forward by
Barbieri et al. (2024a,b) and has already been applied to the so-
lar atmosphere, successfully reproducing its inverted density and
temperature profiles. In this model, stochastic temperature fluc-
tuations at the base of the loop structures produce a non-thermal
population of “hot” and fast particles that can climb the gravity
well and form the corona. On the contrary, “cold” particles that
are thermally distributed at the mean chromospheric temperature
mostly stay close to the base of the loop structures. The transi-
tion region is where the two populations coexist, with a relative
abundance strongly depending on the height above the surface
of the star. We have applied the above formalism to the case of
low-mass main-sequence stars, where we expect that a corona
may form out of stationary loops and therefore our model should
be applicable (the case of larger-mass main-sequence stars is ad-
dressed in Appendix A). We have shown that the model always
predicts inverted temperature and density profiles with a tran-
sition region and a corona for all main-sequence stars. Further-
more, the model predicts a transition region that becomes steeper
as the mass of the star M decreases.

Concerning possible future developments, we first note that,
according to our model, the size of the transition region rela-
tive to the total size of the system is determined by the strati-
fication parameter g̃. This is due to the fact that the plasma in
the loop is treated as collisionless, so the stronger the gravita-
tional energy is in units of thermal energy at the bottom, the less
the conservation of single-particle energy allows cold particles
to climb the potential well, and consequently the narrower the
transition region. Therefore, being g̃ a function of M, the fact
that the size of the transition region depends on the stellar mass
in our model is entirely due to this effect. However, although
not-so-frequent, collisions between particles do occur in the so-
lar corona (Aschwanden 2005). As shown by Landi & Pantellini
(2001), collisions are another ingredient that can determine the
shape of the transition region. Since the mean free path of a par-
ticle in a plasma scales with velocity as v4, where v is the parti-
cle velocity, we still expect that “cold” particles would populate
the base of the atmosphere; the “hot” ones would reach coro-
nal heights at a distance from the base governed by the mean
free path. Therefore, in order to fully understand how tempera-
ture fluctuations at the base of a stellar atmosphere may shape a
transition region and produce a million-Kelvin corona, it would
be interesting to study the interplay between the role of gravi-
tational filtering (studied in the present work) and the filtering
effect produced by Coulomb collisions.

As a further possible development, we note that the atmo-
spheres of stars are not static, but evolve in the form of stellar

winds (Parker 1958). For this reason, an extension of our mod-
elling to the case of open geometry could be interesting. The ex-
ospheric approach (Chamberlain 1960; Jockers 1970; Lemaire
& Scherer 1971; Lamy et al. 2003; Maksimovic et al. 1997;
Zouganelis et al. 2004), which explains the formation of a stellar
wind as a collisionless evaporation from a given altitude, seems
the relevant one for the extension of our work: indeed, using
the same formalism of the present work, it might be possible to
build an exospheric model having its base in the high chromo-
sphere and able to reproduce not only the plasma of the transition
region and of the corona but also the stellar wind.
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Appendix A: Application to high-mass
main-sequence stars (M > 1.5 M⊙)

In the previous Sections we have considered the case of low-
mass main-sequence stars, i.e., stars whose mass M is smaller
than 1.5 M⊙. As discussed in the Introduction, the case of larger-
mass main-sequence stars is different because these stars lack a
convective region below the photosphere and therefore should
not have a solar-like magnetic field able to support a stationary
corona: an X-ray emission from these stars, which is indeed de-
tected, is not attributed to a Sun-like coronal activity. Moreover,
the model we have applied to low-mass main-sequence stars as-
sumes from the outset the presence of stationary coronal loops,
and therefore may not be applicable as such to cases where there
are no stationary magnetic configurations able to support these
loops. This notwithstanding, it is interesting to study what are
the predictions of the model in the case M > 1.5 M⊙, because it
turns out that density and temperature profile exhibit a richer be-
haviour than in the low-mass case, and this may give some hints
to possible generalizations of the model able to encompass also
the case of massive stars.

In close analogy to what we have done in Sec. 3, we as-
sume that the relation between the surface temperature T of a
star and its mass M is also applicable to the chromospheric tem-
perature, which we identify with the reference temperature of the
thermostat Tb. Using the scaling relations valid for high-mass
main-sequence stars given by Eker et al. (2018) for 1.5 M⊙ ≤
M ≤ 31 M⊙ we find that Tb is an increasing function of M, as
for low-mass stars, although in this case the range of values of
Tb is larger because the range of masses is larger, as shown in
Fig. A.1, where Tb is plotted against M/M⊙. Using the above-
mentioned relation we can write the dimensionless parameter
∆T̃ for a generic star in terms of M using its definition given
in Eq. (11) and fixing the mean value of the temperature incre-
ments to ⟨∆T ⟩ = 9 × 105 K. Using also the relation between the
radius R and the mass M, again given by Eker et al. (2018), we
can express g̃ in terms of M and of the loop height zt. The re-
sult is shown in Fig. A.2, for the same fixed value of zt used in
Sec. 3: at variance with the case of low-mass stars, g̃ is now an
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Fig. A.1. Plot of the thermostat (chromosphere) temperature, Tb in
Kelvin, as a function of the mass M (in units of solar mass M⊙). The
green curve corresponds to the mass interval 1.5 < M/M⊙ < 2.4, the
red curve to 2.4 < M/M⊙ < 7, the blue curve to 7 < M/M⊙ < 31.
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Fig. A.2. As in Fig. A.1, for the stratification parameter g̃ as a function
of the mass M (in units of solar mass M⊙) for a fixed value of zt such
that zt/R = 1/35.

increasing function of M. This result implies that in the case of
high-mass main-sequence stars a Sun-like corona is more read-
ily achievable as the mass increases, as shown in Fig. A.3, where
the quantity X, as defined in Eq. (12), is plotted as a function
of zt/R and M/M⊙, analogously to what done in Fig. 8 for the
case of low-mass stars. Apart from this, Fig. A.3 shows that the
model would predict a Sun-like corona even in the high-mass
case and for all the range of masses considered. More interest-
ing differences with respect to the low-mass case show up when
we look directly at the temperature and density profiles, reported
in Fig. A.4 for three choices of M in the high-mass range and for
zt = R/35, a choice ensuring that there is a Sun-like corona.
Comparing Fig. A.4 with Fig. 9 we first notice that not only the

Fig. A.3. Contour plot of X as defined in Eq. (12), computed for high-
mass stars (i.e., M ∈ [1.5 M⊙, 31 M⊙]). X is plotted as a function of the
star mass M in units of solar mass M⊙ and of the top height of the loop
zt scaled by the star radius R. As in Fig. 8, the red line corresponds to
X = 0.9, the threshold separating the regime without a Sun-like corona
(X < 0.9, bluish colours) from that where there is a Sun-like corona
(X > 0.9, yellowish colours).
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Fig. A.4. Density n (in units of the density at the base of the loop,
n0 = n(z = 0)) and temperature T (in Kelvin) as a function of the height
z within the loop, scaled by L0 = L/π (where 2L is the loop length), for
some values of the mass in the range 1.5 < M/M⊙ < 31. As in Fig. 9,
here we choose zt/R = 1/35, such that X > 0.9 for all the values of M
and there always is a Sun-like corona. Solid lines correspond to temper-
atures and dashed lines to densities. The green curves are computed for
M = 2 M⊙, the red ones for M = 7 M⊙, the blue ones for M = 25 M⊙ .

temperature at the base of the loop increases with M (as it hap-
pened for low-mas stars, and the larger variation of T at z = 0
with respect to the low-mass case is only due to the larger vari-
ation of mass, as shown in Fig. A.1), but also the temperature at
the top of the loop increases, at variance with the low-mass case.
For high-mass stars, the temperature at the top of the loop in-
creases from 7×105 K to 3×106 K when M varies from 2 M⊙ to
25 M⊙, while it remained around 106 K in the low-mass case: this
means that for high masses the temperature in the upper corona
is no longer totally specified by the value of ⟨∆T ⟩ (remember
that the latter quantity has been fixed to ⟨∆T ⟩ = 9 × 105 K). At
the same time, if it is true that Tb increases with M up to values
of about 2.5 × 105 K for M/M⊙ = 30, such contribution is not
enough to explain such growth. The second difference between
the high-mass and low-mass case is that in the latter the density
profiles are all very similar to each other and depend monotoni-
cally on M, the density drop being smaller for heavier stars (see
Fig. 9), while the density profiles of high-mass stars reported
in Fig. A.4 are different from each other and their features do
not monotonically depend on M: the density drop in the upper
corona is smaller for the intermediate mass case, and the den-
sity profile in the upper corona is steeper in the larger mass case
with respect to the other two masses considered. A third differ-
ence is that the width of the transition region gets smaller when
increasing M; but if the latter feature is again a consequence of
the already noted fact that g̃ increases with M at variance with
the low-mass case, the previous two differences are less easily
explained. In order to explain these differences we report in
Fig. A.5 the following parameter

g̃
∆T̃
=

g(me + mp)L
2πkB⟨∆T ⟩

, (A.1)

which is a measure of the strength of the gravitational bond
(gravitational energy) with respect to the typical thermal energy
of a coronal particle. As M increases such quantity grows and
it is harder for particles to reach the top of the coronal loop. As
a consequence, the velocity filtration mechanism is stronger and
it produces a higher temperature in corona, much larger than the
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Fig. A.5. The stratification parameter g̃ scaled by ∆T̃ as function of
the mass M (in units of solar mass M⊙) for a fixed value of zt that is
zt/R = 1/35. Colours are as in Fig. A.1.
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Fig. A.6. Comparison between the density profiles already shown in
Fig. A.4 (solid curves) and those obtained by considering only the “hot”
population, that is, by retaining only the last term in the Eq. (4). Colours
are as in Fig. A.1.

contribution of the cold population. The behaviour of the density
can be still understood in terms of the parameter in Eq. A.1. In
Fig. A.6 we plot the density profiles already shown in Fig. A.4
(solid curves), together with the contribution to the density of the
“hot” population (dashed curves). For relatively small masses
the contribution to the total density of such population is small
and dominates only in the upper part of the loop, decreasing
smoothly because of the small value of g̃/∆T̃ . For intermediate
values of the masses the contribution of the “hot” population to
the total density increases and we observe an increase in the den-
sity in the top of the loop. When the mass of the star becomes
very high the contribution of the “hot” population to the total
density still increases but now the gravitational bond is so strong
that the density in the loop decreases very rapidly and the den-
sity at the top of the loop becomes smaller than those observed
for small and intermediate values of the star mass.
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